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In this Report the main result proved is a generalization of a formula 
of Goldstein (Ref. I ) ,  who showed that if the estimate s^( 0 )  for the 
spectral density is computed by the use of the function y ( x )  = sgn( z), 
and if the spectrum is flat, then the dominant term in the variance of 
s (̂o) is W 1~' K I N .  Theorem 3 evaluates this term for non-flat spectra 
and for more general functions y ( x )  . 

This analysis shows that the loss in accuracy caused by working with 
y ( x )  instead of with x itself can be decreased considerably by using, 
for y( x ) ,  a step function with more than two values. 

1. INTRODUCTION 

The spectral density S (o), 10 I L r, of a discrete sta- 
tionary Gaussian process { x k } ,  - 00 < k < 00, of mean 

A simple choice of fi, (k) is 
zero, can be expressed in terms of the correlations 
R= (k) = E ( x n x n + k )  by 

a 

S (0) = Z eib R, (k) = R, (0) + 2 Z cos k0 R, (k). 
00 where N is large. Each term in the sum has the expected 

value R,(k) and the variance of this expression ap- 
proaches zero as N 3 co. Hence, for large N, the value 

ability. However, for large N the evaluation of the sum 
can be quite time-consuming. 

k = - a  k = 1  

An estimate of S (") can be obtained from observations of of this expression is to R z  (kh with a high Prob- 
{ x k }  by --ting the series and replacing the quantities 
R,(k) with appropriate estimates &(k). If we assume 
that R,(O) = E(rQ is known, then the xLIs can be nor- 
malized so that R, (0) = 1, and the estimate for S (0 )  is It has been observed (Ref. 1) that if 

1 
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then R, ( k )  = E ( y , ~ ~ + ~ )  satisfies the relation 

R,(k) = sin[$R.(k)]. 

This suggests using 

(3) 

For large N, and for K small compared with N, this 
formula for 8,(k) can bz evaluated much more rapidly 
than (2) (Ref. 1). When S (a) is evaluated by (1) and (3), 
the problem of estimating its mean and variance arises. 
It is hoped that the mean is close to S ( 0 )  and the variance 
is small. 

A more general method is considered here. We take 
y i  = y ( x i ) ,  where y ( x )  is any odd, bounded, non- 
decreasing function, normalized so that E ( y ? )  = 1. It is 
shown by Lemma 3 that there is a function F ( t )  such that 

In general, F ( t )  is not an entire function, but is analytic 
in a region of the complex plane including the open 

interval - 1 < t < 1. For the present purposes, F (t) may 
be extended in any way to a continuous function on 
- 03 < t < 03. We take 

With this definition, it is shown (Theorem 3) that, except 
for a term of the order 1/N, E [S (o)]  is 

and E {g (w)’} is approximately SK (o)*, with a leading 
error term of the order K / N ,  which is given explicitly, 
and another error term o ( K / N ) ,  the exact order of which 
depends on the degree of regularity assumed for S ( O ) .  
This result is obtained for a large class of summation 
methods (or windows) substituted for Eq. (l), including 
CBsaro sums. 

The hypothesis on S (w)  in Theorem 3 is satisfied if 
S(O) is a periodic function of bounded variation which 
satisfies a Lipshitz condition of order a, (I > 0 (Ref. 2). 

II. ESTIMATES FOR THE M O M E N T S  OF Bv(kl 
Lemma 1. Let f ( z ) ,  z = (zl, . . . , z,) be analytic in a 

convex region D containing the origin, with I f  (.)I 4 M .  
Let { T k ( z ) }  be a set of products of the zj’s such that in 
the power series expansion of f ( z )  at (0, . ’ . ,O), every 
term is divisible by one of the rL’s. If I: is n point whose 
6-neighborhood 

where dk is the degree of T k .  

2 

Proof. Suppose p of the (j’s have absolute value less 
than 6/3. By renaming the coordinates, these may be 
taken to be [,,[‘, . . . ,&,. Then if 

z is in the region D. It follows that the power series 
expansion 
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converges in the region (4, and 

Because of the convexity of D, there is a sequence of over- 
lapping regions of this type converging to zero, in which 
f ( z )  is analytic and Eq. (5) is valid. Hence (5) is also 
valid in a nEighborhood of the origin. There we have 

If Y T ~  (z) is obtained from l i k  (z) by omitting the factors 
zj, with j > p, then each term in Eq. (6) must be divisible 
by one of the quantities 4. It follows that the same is true 
in Eq. (5). The sum of the absolute values of all terms in 
(5) which are divisible by one of the products &(z) is 
dominated by 

where d; is the degree of (z). At z = 5, this is, at  most, 

since, in the last step, only factors of the form 3/6 Iz j l ,  

i 1 p + 1, were added. 

Summing over the = i s  accounts for each term in Eq. (5) 
at  least once. Hence, the result follows. 

Lemma 2. Let { x i }  be a statwnay Gaussian process 
with m a n  zero and variance 1, and a spectral density 
S (o), Io I d x, which is integrable. 

Then for any positive m, there is a constant P m  > 0 such 
that any m x m covariance matrix [&(pi - pk)]j,k=i:..,m, 
pl < p 2  < . . . < p,,, has its eigenvalues 1 Pm. 

Proof. We will use induction on m, and let pm be the 
infimum of eigenvalues for matrices of rank rn. It will be 
shown that pLm > 0, and p m L p + , - l  for m 1 2 .  

For m = 1, the matrix is the identity. Hence, p1 = 1. 

Suppose we have determined that pl, . . . ,pin-1 art? 
positive. We have 

m 

h =  inf 2 ajak Rz ( p j  - p k )  - 
all+ . . . +  a,'=i j , k = 1  
m < m < .  . . <Pnl 

By putting a, = 0, pm-l can be obtained from this ex- 
pression. Hence If p,,, = p+l, it also is posi- 
tive. Therefore we may assume pm < pmw1. Expressing 
&(pi - p k )  in terms of S (o), 

By the Riemann-Lebesgue lemma, 

Hence there is a number no such that if n > %, this integral 
has an absolute value less than (p,,-l - pm)/4m. If one of 
the differences p ; + l  - p ; ,  1 L 14 m - 1, is greater than %, 

It follows that such sets of p i s  need not be considered in 
finding p,,,, and 

where 

3 



JPL TECHNICAL REPORT NO. 32-892 

This is the minimum eigenvalue of a certain matrix, and 
it is the value of the integral when (al, . . . ,%) is the 
corresponding eigenvector. This value is positive, since 
S (w) > 0 on a set of positive measure, and the other 
factor in the integrand has only a finite number of zeros. 
Hence pn, > 0. 

Remark: If S ( w )  is bounded below by a positive 
constant 5,  we may take pill = _S for all m. 

Lemma 3. Let y ( x )  be an odd, monotonic increasing 
function of x, with y (x) = 0 (x") as x + co for some power 
n. Let xl and xz be random variables with mean 0 and 
variance 1, and a bivariate Gaussian distribution. Let 
y i  = y ( x i ) ,  i = 1,2, and assume E ( y f )  = 1. There is a 
function f ( z )  of the complex variable z and an inverse 
function F (z) ,  depending only on the function y (x), such 
that E ( y l y 2 )  = f { E  (xIx2)}, E (xJ,) = F { E  ( y l y Z ) } .  The 
functions f and F are odd, and are analytic in a region 
of the complex plane containing the open interval 
-1 < z < 1. Also, f(+l) = kl, F(t1) = t l ,  and f ( z )  
and F ( z )  are continuous, increasing functions of real z 
on -1LzLl .  

Proof. Define 

1 (7) 
x; + xi  - 2zx1x2 

2(1 - 2) -- 

for - 1 < Re z < 1, taking the branch of the square root 
which is positive for z real. The integral converges 
uniformly in any compact subset of this strip; hence it 
defines an analytic function there. Define f(1) = 1, 
f(-1) = -1. 

Differentiating, 

1 u 
+ (XI - zxJ (x, - zxl) 

x [- 1 - z' (1 - z -  ")' 

and using integration by parts, 

which is positive for - 1 < z < 1. It follows that f ( z )  has 
an inverse F ( z ) ,  which is analytic in a neighborhood of 
the image under f of { -1 < z < l}. 

We must show 

lim f ( z )  = +1, 
2-11 

taking the limit through real z with 
put x2 = zx1 + t ( 1  - z2)'h: 

zI < 1. In Eq. (7), 

f ( z ) = g  d x , y ( ~ ~ ) e - M ~ 1 ~  dte- 'ht2y[zx,  +t(l-z')U]. 

Since y [ zxl + t (1 - z2)'i5] = 0 (1 + I x1 I + I t I "), then, 
by the dominated convergence theorem, 

' J  s 
lim f ( z )  = - dx, y (x,) e-Mc1' dt e-". t' y (x,) = 1. 

2-1-  2 H  ' J  s 
Since f ( z )  is clearly an odd function, 

lim f ( z )  = -1. 
I + - l +  

Hence the analytic inverse function F ( z )  is defined in a 
region which intersects the real axis on -1 < z < 1. If 
the definition F ( t l )  = +1 is used, all the conclusions 
of the lemma follow. 

Hypothesis A. The sequence ( x i }  is a Gaussian process 
with E(x i )  = 0, E (x?) = 1 for  all i, such that for any set 
of distinct integers il,  iZ, . . ' , in, the covariance matrix 
[R, (ii, i k )] i , k=ls  . . . ,n, is positive definite with its minimum 
eigenvalue at least p,,,, a positive constant. 

The function y ( x )  is an odd, bounded, nondecreasing 
function on - w < x < w with E [y ( x i ) ' ]  = 1. The 
random process ( y i }  is defined by y i  = y(Xi ) .  

This hypothesis will be used in several lemmas. How- 
ever, in some of the lemmas, the full strength of the 
hypothesis is not necessary. For example, in Lemma 4, 
y (x) may be any bounded measurable function. 

4 
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Lemma 4. Assume Hypothesis A, with I y (x) I 6 Y. Let 
n,, . . . ,n, be integers, of which only ni,, . . ' , niq are 

- A  

distinct. Then there-is an analytic function 

Fn, . . . n, ({zkjll sk.= j sq ) 

of ?hq (q - 1) complex variables such t k t  

E(yn, . . . y "P ) =Fn,...n,((R=(nik,nij)}lLk<j 

The function Fnl . . . np depends rmly on y (x) and on the 
coincidences in the sequence n,, . . . ,%, and is analytic 
in the convex region D, fomted by the union of the regions 

where (pmn) is any positive definite symmetric q X q 
matrix with 1's along the diagonal, and p[(pmn)] is its 
minimum eigenvalue. In D,, 

In particulur, this inequality is valid if 

Proof. Define the q X q matrix M by 

Let 

where l j  is the number of appearances of ni j  among 
n,, . . . ,n,. Let { p k j }  be a value of { z k j }  at which M is 
positive definite. It will be shown that in the region (9), 
det (M) # 0, and the integral in Eq. (11) converges uni- 
formly. Since the union of all these regions is a convex 
set, there is a unique continuation of [ det (M)] through- 
out D,, subject to the condition [det (M)] ' /$  > 0 if M is 
positive definite. The bound of (10) will be established 
in the region (9). 

Let M ,  be the value of M when {zkj} = { p k j } .  Then 
if we set 

M = M,, + MI, 

the elements of A4, have absolute value less than p/4p 
in (9), where p = p [(pi)]. 211, has a positive definite 
square root M,W. In terms of the norm 

of a complex q-vector u, we have 

and in (9) 

Hence 

This shows that the expansion 

converges, and 

m x ( -  1)"(M,+4M1 M , % ) . U  =\I n = ,  

Two consequences are 

for real u, and 

By the last inequality, 

(13) 

5 
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In  Eq. (ll), put t = M,Uu. We then have 

9 1 ui(M2M;'Mt)ijuj 

Using (12) and (13), the integral converges uniformly in 
(9), and 

~F,,l...np/L-Y~,(dul . . . d u q e x p ( - - i  1 
ut) 3 i = l  

Lemma 5. Assume Hypothesls A. Let p be a fixed 
positive integer, and let nj ,  mi, i = 1, . . . , p be integers, 
with m j  > nj .  It follows that 

where the sum is over all products d n )  of correlations 
R, ( l , ,  12) ,  with l , ,  1, taken from {n, ,  ' . . , m,,} and 1, # l,, 
which have the following properties (and are minimal in 
this respect): 

( i ) .  Each of the 2p letters appears an odd number of 

(ii). For each pair (nj, mj),  there is an even number 
of factors-at least two-with exactly one index in the pair 

times. 

(nj, mj). 

Proof. First assume that n , ,  . . . , m, are all distinct. 
Expand the product 

P = II [ y n j y m j  - E ( y n j y r n , ) ]  

into a sum of products of y i s  and expectations. Taking 
the expected value term by term, we find by Lemma 4 
that E (P) is the value of a function G,, . . . ,,,, ({zkj}) which 
is analytic in the region D,,,, with 

( Gnl . . . mp I < 2p (2lh Y)'),. 

Lemma 1 will be applied to this function. A product 
which is minimal with respect to (i) and (ii) has a degree 
less than 3 (2{), since no correlation may appear more 
than three times. Hence it suffices to show that in the 
expansion of G,,  . . . n i l ,  about the origin, every term 
possesses these two properties. For simplicity, we may 
consider the corresponding expansion of E (P), which is 
valid if all the correlations are small. 

Replacing any one of the variables y n j  (or y n l j )  with its 
negative changes the sign of E ( P ) .  This may be ac- 
complished by replacing xni with -xnjr which changes 
the sign of RE(nj ,2)  for Z#nj. Hence E ( P )  is odd in 
these correlations, which shows that each term has the 
first property. 

NOW, for a given i L p ,  consider the correlations 
R z ( n j , l ) ,  Rz (mj , l )  for l # n j  or mi.  Replacing x , ,~  and 
xmi with -xnj and - x m j  changes the signs of these cor- 
relations, and leaves E (P) unchanged. Therefore, E (P) 
is an even function of these correlations. Also, if all of 
these correlations were zero, we would have 

Hence each term is of positive degree in { R J ( n j , 2 ) ,  
R, (mi,  I ) ,  1 # nj or m j } ,  so satisfying the second property. 

If the values of n,, . . . ,m,, are not all distinct, thc 
above procedure shows that 

where, instead of satisfying (i) and (ii), each product 
satisfies the following properties : 

(i'). Any number which is the value of an odd (or even) 
number of subscripts appears an odd (or even) 
number of times. 

(ii'). Each pair (n j ,  m,) which is distinct from the other 
subscripts satisfies (ii). 

In  one of the factors R,. ( y l ,  q-.) of onc of the products 
X ' ( P ) ,  there is no unique way of assigning one of the 
letters n,,  . . . , m,, to y1, unless 4, is the valucl of only 
one letter. Suppose that this assignment is made in any 

6 
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permissible way. Then X ’ ( P )  can be modified, without 
changing its value, so that it satisfies (i) and (ii). 

First,(i) will be satisfied. Let I,, . . . ,Z, be a set of 
equal letters. For 1 L i L m  - 1, insert into T’(P)  the 
factor R, ( Z i ,  Zm) ( = l ) ,  if necessary, to make Z j  appear an 
odd number of times. Then by (i’), 4, appears an odd 
number of times. After this procedure is applied to each 
set of equal letters, (i) is satisfied. 

Property (i) implies that for each j ,  ~ ’ ( p )  contains an 
even number of the factors R,(nj,l), R,(mj,Z), with 
I#nj or mi. If this number is zero, then by (ii’) one of 
the letters-e.g., nj-is equal to another letter 1,. Insert 
into ~ ’ ( p )  the factor R, ( n j ,  I$ .  If this is done for each i, 
(ii) is satisfied. 

Lemma 6. Assume Hypothesis A. Let { x i }  be stationary, 
with a spectral density S(0), l w l  LT, which is in L2. 
Define 

Suppose p i s  a fixed positive integer. Then for large N 
and for arbitrary positive k,, . . . , k,, 

fi [& ( k j )  - R, (kj)] 
j = i  

Proof. By definition, 

Applying Lemma 5, with mj = ni + k j ,  it follows that 
this quantity is 

The number of products 
it suffices to show 

depends only on p .  Thus 

Since S (0 )  is in L’, 

For 1 4  i A p, if I , ,  1, are selected from nj,  mi, and 4, 1, 
from the other subscripts, by Schwarz’ inequality 

nj = I J 

and similarly, 

If necessary, let some of the factors of T ( p )  be removed 
to make it a product 7’) which is a minimal product with 
the property that for each i, the total number of appear- 
ances of nj and mj is at least two, and none appear in the 
combination R,(ni - mi). Note that the degree of T’ is 
at least p. 

Consider 

n,, . . . . n,,= 1 

For any i, if n j  or mi occur in exactly two factors of T’, 
we may estimate the sum from above by summing over 
nj and applying (14). If there is only one such factor, (15) 
may be applied. This gives a s u m  over less indices of a 
product of lower degree. Reiteration of this procedure 
eventually leads to a product in which, for any i such 
that ni or mi appears, there are at  least three factors con- 
taining n j  or mi. By the minimal property of T‘, there are 
no factors remaining. 

Let v 2  be the number of times Eq. (14) was applied, 
and V, the number of times Eq. (15) was applied. Then 

7 
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The degree of X' is v1 t 2v2 A p; also, v1 + v Z  I p .  There- 
fore we conclude that 

Lemma 7.  In Lemma 6, if we add the condition 

it follows that 

[ f i , ( k j )  - R ,  ( k , ) ]  = 0 (N-[(p+1)/21), 
i = i  1 

where [ ( p  + 1)/2] denotes the integral part of ( p  + 1)/2. 

Proof. In the proof of Lemma 6, whenever a factor 
N S  is introduced into the estimate by the use of Eq. (15), 

This expected value is at least as large as 

82mPr{ l f?u(k)  - R , ( k ) l > S } .  

Thus we obtain the desired result. 

Theorem 1.  Let G (zl, . . . , zm) be analytic in a domain 
of complex m-space which contains the set 

- 1 < Z j  < 1, j = 1, . . . ,m, 

and assume that G (z, ,  . . . , zm) is defined and bounded 
when all the zi's are real. Let {xi} be a stationary Gaussian 
process .with mean 0 and variance 1, and a spectral den- 
sity s(,) in L'. Let y ( ~ )  be an odd, bounded, m n -  
decreasing function with E[y(xi) ']  = 1. Put 

y i  = y ( x i ) ,  

R, (4  = E ( Y n Y n + k ) ,  

1 N 

R ,  ( k )  = 7 2 y f l y f l + k .  
A 

n - I  

Then for fixed p ,  large N ,  and arbitrary k , ,  1 

. .  

where 

Proof. Let p 2  be the quantity of Lemma 2. Then for 
k > 0, and for real tl ,  t2, could be used instead. Thus, in the estimate 0 (N-pI2), if 

p/2 is not an integer, we may replace it by the next larger 
integer [ ( p  + 1)/2]. t f  + ft + 2tlt2 R, ( k )  p2 (t: + ti). 

Lemma 8. Under the hypotheses of Lemma 6, for f ied 
m and 6, and for arbitrary k > 0, This implies IR,(k)I 1 - p2. By Lemma 3, IR,(k) l  

A f ( l  - p.) < 1. 
P r { l a , , ( k ) - R , ( k ) I > S }  =O(N- '" ) .  

Proof. If we take p = 2m in Lemma 6. and k , ,  . . . , k,, For sufficiently small p, the set of ( z , ,  . . . ,znJ such 
= k,  we obtain that 

8 
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for some C ,  . . . , t with 

lies in the region of analyticity of G(z, . . . ,z,,,). Thus it follows that for any 
kl, 1 . . k, the set 

lies in this region. 

Suppose 

Then 

A 
By Lemma 8, the probability that (17) is not satisfied by zj = R,,(ki) for all i is 
O(N--(p+l)/z). Hence 

By Schwarz's inequality and Lemma 6, 

Thus, since the terms with 2 q = 1 have expectation 0, taking the expected value 
of the left members in Eq. (18) term by term yields the desired result. 

Theorem la. I f ,  in addition to  the hypotheses of Theorem 1, we assume 

the error t e n  in E q .  (16) is 0 (N-[p/zl-l). 

Proof. The proof is similar to that of Theorem 1; however Lemma 7 is used 
instead of Lemma 6. 

9 
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111. THE MEANS OF FUNCTIONS OF THE E,(&) 

Lemma 9. Assume Hypothesis A. 

where the sum is over all products T:l of three distinct 
correlations R,  (ni - n j , )  with j # i’ such that each index 
n,, . . . ,n, occurs in the product. 

(b).  Let vi = y,l,y,llj -- E (y,ljyllli), i = 1, . . . ,4. Then 

+ E (u,u,) E (u,u,) + 0 (E I 7:: I), 

where the sum is ouer all products T: of three distinct 
correlations R , ( q j , q , , )  with 9 j  = n j  or m j ,  9 j ,  = nj. or 
ml,  such that the three pairs (i, i’) include 1 , 2 , 3  and 4. 

Proof. (a). Assume first that nl, . . . , n, are distinct. 
Consider the expansion of E (yly,y:ly,) in a power series 
when the correlations are all small. Since y(x) is odd, 
each term involves every subscript. Therefore the only 
terms not divisible by one of the products rIr3 are those 
which contain only two distinct correlations. There are 
three possible choices for these correlations: R,  (n,, n,) 
and R,  (wl, n,) ,  and the two other pairs obtained by 
permutation of the indices. The same applies to the 
quantity 

But if all correlations are zero except R,(nl,n,) and 
R,(n,,n,), or one of the similar pairs, Q is zero. Hence 
(a) is true by Lemma 1. 

If n, = n, # qI, n, # n4 # ~ 1 ,  

For small values of R,  (nl, n,,), R,. (n , ,  n , ) ,  R,  (n:{, n,), Q 
may be expanded in a power series in these correlations. 
Consider first the terms which involve only one of these 
correlations. The terms involving only R,. (nl ,  PI) give the 
value of Q when R,  (n , ,  n,) = R,. ( t ~ , ~ ,  n,)  = 0, which is 
zero. Consequently there are no such terms. Similarly, 
there are no terms which do not contain at least two 
distinct correlations. Thus, by Lemma 1 ,  

Inserting the factor R,(n,,n,) (=1) in each term gives 
O ( 2  [Til). 

The cases with more than one pair of equal subscripts 
may be treated similarly. 

(b). The proof of Lemma 9b is analogous to that of 
9a. Therefore, only the case of distinct subscripts will be 
considered. 

In the expansion of 

Q* = E ( u ~ u ~ u ~ u , )  - E (u,u,) E (u:$u,) 

every term which is not divisible by one of the products 
-.’, contains only correlations which may be put into two 
classes: After a permutation of subscripts, one class of 
correlations depends on n , ,  m,,  n2, m,; the other class 
depends on n,, m,{, n,, m, .  However, setting all correla- 
tions zero which are not in one of these classes makes 
Q4 = 0, since then 

E ( u , v : , )  = E ( u , v , )  = 0. 

Consequently there are no such terms. The result follows 
by Lemma 1. 

Lemma 10. Assume Il!ypothcsis A, with { x i )  stationary 
and 

1 0  
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l and 

Let 

Then, for arbitrary N, K > 0, 

form = 3 or 4 and O L  t L m ,  

Proof, By Lemma ga, with mi = nj + k, i = 1, 2, 3, ml = nr + 1, 
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where each product 7: is a product of three distinct correlations involving different 
nj's, such that n,, . . . ,n, all occur. By summing in the proper order, using 
estimates such as 

we find that for any such product, 

By the application of Lemma 7, 

We have 

Therefore, using Lemma 9a, 

where each product x : ~  is the product of three distinct correlations of pairs of the 
variables xnl, xnl+k, xnp ,  xnZ+l, such that all subscripts occur. By summing in the 
proper manner, using estimates such as (%), 

1 A- \ 

The contribution of the first two terms in the sum on the right in (27) is 0 ( K N - ' ) ;  
since R,) ( j )  = 0 ( I R, ( j )  I ). Thus 

and summing (26) yields (19). Similarly, an equation analogous to (27) shows that 
(21) is true. 

12 
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For the left side of (Z), instead of Eq. (27), we now have 

Since R, ( j )  = 0 ( I  R, ( j )  I), each R, on the right may be replaced by R,. The term 
1 x3 I contributes 0 (N- l ) ,  as before. Expanding the rest of the summand into a 

sum of products, we obtain a sum of terms of the type x:%. Hence (22) is true. 

The remaining relations, (20), (23), and (24), depend only on Lemma 7: 

and 

Theorem 2. Let G ( z )  and H ( z )  be odd functions, analytic in a region including 
the interval -1 < z < 1 and defined and bounded for all real z. Let ak, b k ,  

k = 1,2, . . . be numbers of absolute oalue at most 1. 

Assume that { x i }  is a stationary Gaussian process with mean 0 and variance 1, 
with 

Let y(x)  be an odd, bounded, nondecreasing function with E { ~ ( x ~ ) ~ }  = 1. 

1 3  
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Then for arbitrary positive integers K ,  N ,  

1 ’I’ 

akbl G [& (k ) ]  H [ f i ,  ( z ) ] }  = $, akbt G [ R ,  ( k ) ]  H [R, ( Z ) ]  + G’(0) ” ( 0 )  2 akbt ~1 2 
E ( k , l = i  k , 1 2 i  k , l = i  nl .n?=l  

X [ R ,  (n,  - n2) R, (n,  - n2 + k - 1) + R, (n,  - n2 + k )  R, (n,  - nz - 1 ) 1  

+ 0 (N- l  + ). 

Proof. Apply Theorem l a  to the function G (2,) H (zJ.  For p = 4 we have 

j i i  G ( t )  [ R , ( k ) ]  [R,(Z)] 
E { G  rR/  (VI HC(fi, ( 4 1 1  = G [E!/ @ ) I  H 1% (41 + Ill i = 2 f E = fI t !  (m - t ) !  

X E ( [ $ f k )  - R , ( k ) l t  [ & ( I )  - R, (Z) ]m- t }  + O ( N - 3 ) .  

Similarly, 

(31) 
1 

E ( G [ $ ( k ) l }  = G [ R , ( k ) ]  + ~ G ” [ R , ( k ) l E { [ k , ( k )  - & ( k ) ] ’ }  + o ( N - ’ ) .  

The expressions on the left in (28) and (29) may be ex- 
pressed in terms of (30) and (31). The O-terms in these 
equations contribute 0 (K2N-3)  to Eq. (29) and 0 (KN-’) 
to Eq. (28). The contributions of the other terms will now 
be investigated. 

For any derivative of G (or H )  which occurs, we have 

since G ( z )  is odd. Eliminate the derivatives in Eq. (30) 
in this way, multiply by akb,, and sum over k and 1. By 
applying Eqs. (19) through (23) of Lemma 10, Eq. (29) 
results. 

Similarly, by the use of Eq. (24), Eq. (28) follows from 
Eq. (31). 

Lemma 11. Suppose g (w) ,  I 0) I 4 7, has the Fourier 
.?cries 

-L 

g ( W )  = 2 akeikw. 
14 k--m 

Let f ( z )  be analytic in I z I < p, with f (0) = f’ (0) = f” (0) 

< p. I f  g ( W )  has bounded variation, and 
= O . L e t b k , - m  < k <  ~ , b e s u c h t h a t b k = f ( a k ) i f I a k I  

then the function 

has a continuous second derivative. 

Proof. Choose r between 0 and p. There are at most a 
finite number of values of k for which I ak I > r ;  removing 
the corresponding terms from the series for g ( 0 )  and 
h(,)  cannot affect the conclusion. From this we may 
assume that I ak I A r for all k .  Then bk = 0 (I ak I ’). 
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- 2 kzbkeik” 

is a continuous function, since the series converges uN- 
formly. The function h(o)  is obtained by integrating 
twice. 

IV. THE MAIN THEOREM 

Theorem 3. Aszume that { x i }  is a stntionuy Gaussian and for 0 < 0 < x 

process with E (x,) = 0, E (x?) = 1, 

E {g (0)2} = Sg ( o ) ~  + F ’ ( o ) z s ,  (0)’ -k 6, (3) 
5 IR,(k)l < m, 

and a spectral density S (@), I o  I L T ,  which is a function 
of bounded variation. Let y ( x )  be an odd, bounded, non- 

= 1. Define y, = y ( x i )  and 

- X  

where 

1 *  
y = F Z c i  decreasing function on - 00 < x < a, such that E [y(x , )Z]  1. = 1 

and & satzsfies the following bounds: 
A 1 ’  
Ry(k) =N Z y n y n + k .  ( i ) .  For  0 such that 

n -  1 

Let S u ( m )  be the spectral density of { y , } ,  and F ( z )  the s (0’) = s (0) + 0 (10 - “’I”), (34) 
function of Lemma 3, with its definition extended to all 
real z so that F (2) is bounded for z real where 0 < a L 1, 

Let {ck, k = 1, . . . , K }  be a nonincreasing sequence of 
numbers with c1 L 1, cK h 0. 

0 (K1-“ N-l), O < a < l ,  (35) 
0 ([ 1 + log K ]  N-I) ,  a = l .  (36) 

Define (ii). If is such that the derivative S’ (0) exists, and 

; ( w ) = 1 + 2  k =  5 1 c k c o s k ~ F [ a y ( k ) ] ,  s (0’) = s (0)  + (a’ - 0 )  S’ (0 )  + 0 ( I 0’ - 0 I l i  q, (37) 

where ,8 > 0, 

6 = 0 ( N - I )  (38) 
T h m  for any positive integers K ,  N with K 4 N ,  

E {s^(w)) = S K ( w )  + O ( N - ’ )  
Proof. B y  applying Lemma 3 and Lemma 11, S, ( 0 )  sat- 

(32) isfies all the hypotheses for S (0) .  

1 5  
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1% Theorem 2, take ak = bk = ck cos kw, G ( z )  = H (2) = F (z). Using the series 
for S ( W ) ,  we find that (32) is true for K L N ,  and 

li 1 3‘ 

E {g ( w ) z }  = S, (“), + 4F’(O)’ 2 ckcl cos k, cos NL 2 

+ R,(n, - n2 + k) Ru(nl - n, - 2 ) )  + O(N-’). 

This sum may be expressed in terms of S, (0)  by the relation 

{E, (n,  - %) R, (?h - n, + k - 2) 
k . I L I  w . n l = l  

We find that (33) is true, with 

F’ (O)’ I/ dw’do” S, (0’) S, (0”) OI (0, a’, 0”) + 0 ( N - I ) ,  

where 

Integrating term by term, 

By the second mean value theorem (Ref. 3) ,  since cf is monotonic, for some index 
K ‘ A K  

ti ti’ ti 

Z c ~ c o s ~ ~ ~ = c :  ~ 0 ~ 2 k w + c k  ~ 0 ~ 2 k w + O ( 1 ) = 0 ( 1 ) ,  

for 0 < 0 < X .  Hence 

and 

1 6  
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where 

By virtue of the identities 

N 
2 
1 
2 

v sin2 - (0‘ - 0”) 

sin2 - (0’ - 0”)  

2 .i ( U l - 0 ” )  (nl-nn) = , 
n,. n?= 1 

we have 

N P sin2 - (ol - w )  

sinz-(mi - 0 )  

2 

2 

sin’ - (0’ - 0”) 1 2 
1 t&jm (0, w‘, 0”) = - N2 

Also, 

where 

G j m  = JJdW’dw” [ S y  (0’) S y  (a”) - S y  ( w ) ’ ]  &jnz (0, 0’) 0”). 

Since 

it is sufficient to show that & j ,  satisfies (35), (36), or (38). 

BY (4% 

N P sin‘- (0’ - 0”)  

sin2 - (0’ - O r f )  W 1 . P  

sin2 - (wl - 0 )  

sin2- (mi - 0 )  

2 2 

2 2 
2 1  do‘&“ I S , ( w ’ )  Sy(0”)  - S , ( w F  I 

Using the fact that S, (w) is an even function, 

1 7  
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If we assume (34), it follows that 

Eq. (41) may be estimated by using the relations 

n 
2 
1 

sin2 - w’ 

sin’ - w’ s’ 2 

&’ = an, 

We find for 0 < a < 1, 

0 (n’-”), O < a < l ,  

0 (1 + logn), Q = 1. 

Gj,n=O Z ( N - p  1 1 - 0 1  + p N - i - a )  1 = o ( K l - u N - l ) ,  1 p . j , N I  

and for a = 1, 

GInl. = 0 ([ 1 + log K] N-’), 

verifying (35) and (36). 

If we now assume (37), this implies that 

cos w - cos 0‘ 

sin o 
S h ( w )  + O(Ic0sw - COSw’(’+q, s, (w’) = s, ( 0 )  + 

s, (w’) s, (w”) - s, 2 cos 0 - cos 0’ - cos off 

sin o 
= s, (w) s: (0 )  

+ O (  1COS“ - cosw’I’+~ + Jcosw - cosw”(’+fl 

+ lcosw - COSO’I l c o s w  - cosw”)). 

By a procedure analogous to that above, using the estimate 
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This integral may be evaluated by integrating the series for ai, term by term. 
Most of the terms give no contribution. We have 

&/-/ A'do"2 cos 0 - cos 0' - cos 0") airn (0,"') 0") 

m i  n ( j ,  m ) 2 - - - c o s 0  z cos2kuJ 
N k = i  

n i i n ( j , m )  

k = 1  

1 
- -- sin0 Z sin2kw + 0 (N-l) = 0 (N-l). 

Hence &jm = 0 (N-*). 

l?.purk: For simple choices of S (o),  a more explicit formula for the variance 
of S (0) may be given. For example, if 

S ( 0 )  = 1 +2R,(l)coso, 

in the terms of order N-I only the quantities 

occur. For ordinary partial sums (cl, . . . , c K  = l), we find that 

1 
N - -F'(O)' [2 + 8 p  + 2v + 47 + 8a - 18p2] 

1 
N _ -  [ F ' ( 0 ) 2  - F'(p)']  [ 2 v  + 47 + 4a - lop'] + O(KN-*). 

For small values of R7(l), the terms following the first on the right decrease the 
average variance. 

1 9  
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V. THE VALUE OF F’(O1 

If $(u) is evaluated by the first method described in 
the introduction (using y(x) = x), it is easily verified 
that the conclusion of Theorem 3 applies: e.g., if S(u) 
satisfies (ii) of Theorem 3, 

n = 3: a, = 0.327, 

a’ = 1.030, 

a3 = 1.951, 

h 2yK E {S (w)’} = S,(o)‘ + - S (0)’ + 0 (N-I ) ,  N 
c, = 0.659, 

cz = 1.447, F ’ ( 0 )  = 1.062. 

for O <  O < T .  The term of the order K/N given in 
Theorem 3 differs from this in the replacement of S(W)’ 
with S ,  (u), and the introduction of the factor F’ (0)’. If these numbers are compared with the value F’(0)  

= 1.571 for n = 1, it is seen that taking n = 2 reduces 
F ’ ( 0 )  most of the way to I. 

It  can be shown that S , ( m )  always lies between the 
same bounds as S(a) ,  and has the same average value. 
Thus the esect of the factor S,(w) is to increase the 
variance of S (0 )  in some places, and decrease it in others. In the construction of an autocorrelator using such a 

steD function. it is convenient if all nonzero values of 
y(x) have ratios which are powers of 2. If we modify the 
function given above for n = 2 by making a2 = 4al, and 
then choose the best value of c,, we get the function 

The factor F‘ (0)’ gives a uniform increase in variance 
for all w. BY differentiating Eq. (7) in the Proof of 
Lemma 3, we have 

F ’ ( 0 )  = l /f’(O) = E {xy ( x ) } - ’ .  ( 1.608, x > 0.943, 

0 < x < 0.943, 

x < 0, 

In particular, for y(x) = x, F ’ ( 0 )  = 1, and for y(x)  
= sgn(x), F’(0) = ~ / 2 .  It can be shown that for any 
other choice of y(x)  which is an odd nondecreasing 
function such that E ( y ( x ) , }  = 1, F’(0) lies between 
these limits. 

for which F ’ ( 0 )  = 1.137. This is almost the same value 
as that given above, showing that the value of F ’ ( 0 )  is 
not very sensitive to small changes in the constants. The 
function F ( z )  is plotted for this case in Fig. 1. Note that 
this function is essentially linear until I z I is close to 1. 

It $ advantageous to choose a function for Y (X) such 
computed and F’ (0) is close 

is simple if Y (x) is a step function 
that R~ (k) can be 
to The 
taking only a few values. This leads us to consider a 
function of the type 

Another choice of y(x) which is easier to work with is 
given by choosing n = 2, al = 0. The minimum of F’ (0) 
is 1.232, occurring for the function 

Y (x) = ai, Cj-1  < x < Cj, i = 1 , .  . . 9 n, 

Y ( - X )  = - Y ( 4 ,  
whereO=c , ,<c ,<  . . .  < c , = + o o , O I a ,  . . .  <a,. 
For a given value of n, the numbers aj, c, may be chosen 
so as to minimize F’(O) ,  given E [y(x)’] = 1. This must 
be done numerically for n s 2 .  The best choices for 
n = 2 ,3  are: 

1.36, x > 0.612, 

y(x) = 0, 1x1 < 0.612, 

x < -0.612. I - 1.36, 
n = 2: al = 0.482, 

a2 = 1.608, 
For n = 2, a’ = 2al, the corresponding values are 

c1 = 0.981, F ’ ( 0 )  = 1.133. a, = 0.7095, c1 = 0.9765, F ’ ( 0 )  = 1.188. 

20 
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Fig. 1. The function F (z) when y (XI takes four values 
with a ratio of 1:4 

REFERENCES 

1. Goldstein, R. M., Radar Exploration of Venus, Technical Report No. 32-280, Jet 
Propulsion laboratory, California lnstitude of Technology, Pasadena, California, 
May 25, 1962. 

2. Zygmund, A., lrigonometrical Series, 2nd edition, Chelsea Publishing Co., New 
York, N. Y., 1952, p. 136. 

3. Courant, R., Differential and Integral Calculus, Vol. 1, lnterscience Publishers Inc., 
New York, N. Y., 1949, p. 256. 

2 1  


